Ordering the Non-starlike Trees with Large Reverse Wiener Indices

نویسندگان

  • Shuxian Li
  • Bo Zhou
چکیده

The reverse Wiener index of a connected graph G is defined as Λ(G) = 1 2 n(n− 1)d−W (G), where n is the number of vertices, d is the diameter, and W (G) is the Wiener index (the sum of distances between all unordered pairs of vertices) of G. We determine the n-vertex non-starlike trees with the first four largest reverse Wiener indices for n > 8, and the nvertex non-starlike non-caterpillar trees with the first four largest reverse Wiener indices for n > 10.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the edge reverse Wiener indices of TUC4C8(S) nanotubes

The edge versions of reverse Wiener indices were introduced by Mahmiani et al. very recently. In this paper, we find their relation with ordinary (vertex) Wiener index in some graphs. Also, we compute them for trees and TUC4C8(s) naotubes.

متن کامل

Ordering Trees with Perfect Matchings by Their Wiener Indices

The Wiener index of a connected graph is the sum of all pairwise distances of vertices of the graph. In this paper, we consider the Wiener indices of trees with perfect matchings, characterizing the eight trees with smallest Wiener indices among all trees of order 2 ( 11) m m with perfect matchings.

متن کامل

On Modified and Reverse Wiener Indices of Trees

two sides of the edge e, and where the summation goes over all edges of T . The λ -modified Wiener index is defined as Wλ (T ) = ∑ e [nT,1(e) · nT,2(e)] . For each λ > 0 and each integer d with 3 ≤ d ≤ n− 2, we determine the trees with minimal λ -modified Wiener indices in the class of trees with n vertices and diameter d. The reverse Wiener index of a tree T with n vertices is defined as Λ (T)...

متن کامل

General Randić indices for matching and $\cal{L}$-characteristics polynomial of Starlike trees

Here we study the normalized Laplacian characteristics polynomial (L-polynomial) for trees and specifically for starlike trees. We describe how the L-polynomial of a tree depends on some topological indices. For which, we also define the higher order general Randić indices for matching and which are different from higher order connectivity indices. Finally we provide the multiplicity of the eig...

متن کامل

Wiener Indices of Binary Trees

One of the most widely known topological index is the Wiener index. The Wiener Index Conjecture states that all positive integer numbers except a finite set are the Wiener indices of some trees. We explore the Wiener indices of the binary trees. We present efficient algorithms for generating the Wiener indices of the binary trees. Based on experiments we strengthen the conjecture for the class ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016